Short Communications

Contributions intended for publication under this heading should be expressly so marked; they should not excced about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible. Publication will be quicker if the contributions are without illustrations.

Acta Cryst. (1967). 22, 918
The space groups and unit-cell dimensions of 2,4,6-tribromoaniline and 2,4,6-trichloroaniline. By E. O. Schlemper* and Judith Konnert, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, U.S.A.
(Received 16 January 1967)

Crystals of $2,4,6$-tribromoaniline are orthorhombic, space group $P 2_{1} 2_{1} 2_{1}$, with $a=13 \cdot 46, b=14 \cdot 69, c=$ $4 \cdot 27 \AA, Z=4$. Crystals of $2,4,6$-trichloroaniline are monoclinic, space group either $P 2_{1} / m$ or $P 2_{1}$, with $a=15 \cdot 88, b=3 \cdot 86, c=13 \cdot 38 \AA, \beta=111^{\circ} 45^{\prime}, Z=4$.

In connection with some X-ray work being done on 2,4,6tribromobenzonitrile and 2,4,6-trichlorobenzonitrile, the space groups and unit cells of 2,4,6-tribromoaniline and 2,4,6-trichloroaniline were determined.

From oscillation, Weissenberg, and precession photographs (Mo $K \alpha, \lambda=0.7107 \AA$), crystals of 2,4,6-tribromoaniline were found to be orthorhombic with cell dimensions $a=13.462 \pm 0.008, \quad b=14.692 \pm 0.014, \quad c=4.266 \pm 0.005 \AA$. The systematic extinctions, ($h 00, h=2 n+1 ; 0 k 0, k=2 n+1$; $00 l, l=2 n+1$), indicate that the space group is $P 2_{1} 2_{1} 2_{1}$. If $Z=4$, the calculated density is $2.596 \mathrm{~g} . \mathrm{cm}^{-3}$; the experimental density is $2.578 \mathrm{g.cm}{ }^{-3}$ (Jaeger, 1907).

[^0]Needle-like crystals of 2,4,6-trichloroaniline were mounted in capillaries to prevent sublimation. Precession photographs taken with Mo $K \alpha$ radiation ($\lambda=0.7107 \AA$) indicate that the cell is monoclinic with the unique axis as the needle axis. A unit cell with the dimensions $a=15.875 \pm 0.006$, $b=3.863 \pm 0.005, c=13.381 \pm 0.005 \AA, \beta=111^{\circ} 45^{\prime}$ was chosen. A rough experimental density of $1.6 \mathrm{~g} . \mathrm{cm}^{-3}$ was obtained; for $Z=4$, the calculated density is $1.712 \mathrm{~g} . \mathrm{cm}^{-3}$. The systematic extinctions, $(0 k 0, k=2 n+1)$, indicate that the space group is either $P 2_{1} / m$ or $P 2_{1}$. No further X-ray work on these compounds is planned.

We thank the National Science Foundation for their support of this work.

References

JaEger, F. M. (1S07). Z. Kristallogr. 42, 236.

Acta Cryst. (1967). 22, 918

Absorption correction in the Weissenberg methods. By A.Santoro and M. Zocchi, Institute for Materials Research,
National Bureau of Standards, Washington, D.C., U.S.A.
(Received 3 November 1966)
A procedure is described for calculating the direction cosines of the incident and diffracted beams in a reference system attached to the crystal for the general case of the Weissenberg method.

Methods have been described for the calculation of the absorption correction in the equi-inclination and normalbeam techniques (Wells, 1960; Coppens, Leiserowitz \& Rabinovich, 1965; Wuensch \& Prewitt, 1965). However in some cases (Santoro \& Zocchi, 1966) it is preferable to use the Weissenberg method with arbitrary values of the angle μ (International Tables for X-ray Crystallography, 1959), and therefore it seems useful to extend the treatment of the absorption correction to the general case.

In what follows we will only describe a procedure for calculating the direction cosines of the incident and diffracted beams in a reference system attached to the crystal; from this point on the calculation of the transmission factor for each reflection can be performed as suggested, for example, by Busing \& Levy (1957) or by Wuensch \& Prewitt (1965).

It has been shown (Santoro \& Zocchi, 1966) that, for any Weissenberg method, a reciprocal lattice point is in reflecting position when:

$$
\begin{array}{r}
z s\left(n-2 v_{0}\right)+2\left[1-s^{2}\left(\frac{n}{2}-v_{0}\right)^{2}\right]^{\frac{1}{2}}(y \cos \omega-x \sin \omega) \\
+d^{* 2}=0
\end{array}
$$

$$
+d^{* 2}=0, \quad \text { (1) }
$$

where ω is the rotation angle, v_{0} is the index of the reciprocal layer under examination, s is the period on the rotation axis, x, y, z are the coordinates of the point for $\mu=\omega=0^{\circ}$ with respect to a Cartesian system X, Y, Z, attached to the laboratory, and defined in the given reference,
$d^{* 2}=x^{2}+y^{2}+z^{2}$, and $n=(2 \sin v) / s$ (International Tables).
From equation (1) we obtain:

$$
\begin{equation*}
\tan \frac{\cdots}{2}=\frac{x \pm\left[x^{2}-(A+y)(A-y)\right]^{\frac{1}{2}}}{A-y} \tag{2}
\end{equation*}
$$

[^0]: * Present address: Department of Chemistry, University of Missouri, Columbia, Mo., U.S.A.

